

Organic Disease Management Guide for Specialty Crop Production

Nicole Gauthier	Henry Smith	Kim Leonberger	Sarah Geurkink
Extension Plant	Plant Pathology	Plant Pathology	Production Specialist,
Pathologist	Research Analyst	Extension Associate	Organic Assoc. of KY

A wide range of plant pathogens can cause disease in fruits, vegetables, ornamentals, hemp, and other specialty crops. Bacterial, fungal, and viral diseases can result in plant damage and yield loss. Factors that affect plant disease incidence and severity include pathogen presence, inoculum load (the concentration of pathogen that is present), host susceptibility (a plant's vulnerability to pathogen), and environmental factors including temperature and moisture/wetness.

An integrated pest management (IPM) program is recommended for preventing and controlling plant diseases in both conventional and organic production systems. Cultural approaches, which target practices that make an environment less conducive to pathogen development, should be incorporated into all commercial systems. These practices often aim to prevent disease by suppressing plant pathogens, altering the environment, or improving plant health.

CONTENTS:	
	Page
Cultural Management	2
Table of Cultural Practices	3
Fungicides	4
Table of Biological Fungicides	4
Table of Botanical Fungicides	6
Table of Inorganic Compounds	8
Summary Table of Organic Fungicides	9

In some production systems, particularly monocultured fields and/or intensive production, applications of fungicides and bactericides may be necessary to further mitigate plant diseases. In organic systems, these products are derived from naturally occurring compounds. Organic fungicides and bactericides provide the greatest efficacy when applied preventively (prior to disease onset). Growers should proactively develop a spray schedule for each crop and each season to limit the impact of disease.

This document provides information on cultural and biological options for organic management of fungal and bacterial diseases; viral disease management is not covered in this publication. As in all systems, fungicides and bactericides should be combined with cultural practices such as crop rotation, resistant cultivars, and sanitation.

CUTURAL MANAGEMENT

Management of plant diseases using cultural practices typically focuses on altering production approaches to make situations less favorable for plant pathogens. These often include resistant cultivars, avoidance of sites with history of disease, and manipulation of environmental conditions such as moisture/wetness. Some cultural methods can have significant impacts on disease development, while others can have small but cumulative effects. In low- to moderate-risk situations, cultural practices alone can sufficiently manage disease. However, cultural practices are often combined with fungicides in commercial systems to ensure fewer disease outbreaks. Regardless, cultural practices should be the first consideration for growers, and as many practices as possible should be implemented.

Cultural practices presented in this publication are broadly discussed. Crop-specific information is available in the series *Cultural Calendars for Commercial Production* (available for fruit and vegetables) and in Plant Pathology Fact Sheets (PPFS) found on the UK Department of Plant Pathology webpage. Table 1 provides information on cultural practices that target common disease problems.

Cultural Practices

Preplant

- Select cultivars with tolerance or resistance to common diseases, when possible. Consult production guides and seed catalogs for information on resistant/tolerant cultivars.
- Purchase disease-free seeds or transplants.
- Use new or clean/sanitized pots and potting media when starting transplants.
- Inspect plants after purchase and/or prior to transplant. Check roots, stems, and leaves. Do not install plants that appear unhealthy or damaged.
- Rotate out of related plants (same plant family) for 2 to 3 years.
- Select fields that are well-drained and do not have a history of disease.
- Deep till between crops; use non-host cover crops, particularly in no-till production systems.

Production

- Use non-host cover crops between field seasons and between rows.
- Promote air circulation by increasing plant and row spacing, pruning, and staking.
- Open greenhouse vents to exchange humid air.
- Maintain relative humidity <70% for fungal diseases and <85% for bacterial and water mold diseases, when possible. Monitor greenhouse humidity.
- Apply a mulch layer (plastic, straw, wood chip, or cover crop) to limit transmission of pathogens from soil onto healthy tissues.
- Maintain plant health using appropriate planting practices, avoiding injury, irrigation during dry weather, and fertilization according to soil test results.
- Avoid or mitigate standing or pooled water (greenhouse) and poor drainage (field).
- Manage weeds and volunteer plants that can serve as reservoir hosts to prevent buildup of pathogens in fields and transmission of pathogens onto crops.
- Scout fields and greenhouses regularly. Utilize diagnostic lab services, as needed. Contact a local county extension agent for assistance with plant problems.

- Remove infected plant tissue throughout the growing season. When plants exhibit wilting, dieback, or decline, remove entire plants, including roots.
- Remove infected fruit/flowers/produce throughout the growing season. Avoid mixing diseased and healthy fruit during harvest.
- When removing diseased plants or plant tissue, dispose of them away from fields. Never leave debris in fields. Do not compost diseased plants, plant tissue, or fruit.
- Clean and sanitize all tools and equipment between fields and after each use.
- Clean shoes to prevent moving pathogens from field to field or zone to zone.

After harvest

- Remove all plants and plant debris at the end of the season.
- Disinfect tools and equipment; sanitize greenhouse floors and surfaces between crop cycles.
- Dispose of diseased plant tissue and clippings away from fields. Never leave debris in fields. Do not compost diseased plants or fruit.
- Deep-till fields at the end of the season to bury residual pathogens and infected debris.
- Plant non-host cover crops. If possible, consider planting biofumigant cover crops such as mustards and radishes.

Table 1. Cultural Practices for Common Diseases of Specialty Crops

				1	£	1	/	, ic	10 ¹⁰	/	/	/
		1	tunes ampines		Jew Serium	ann' is	1	Noter Prison	them and	101	outremp.	- The
		ots	turne of	to milition of the second	20 mc	inatodee	mine	M AM	in 10	htoctonic sci	d np	20
		158	ampli	MARTIN	sally	mater	NOP.	Mder	min.	120CL	utile	1158 ⁵
Clean seed/cuttings		x	X	X	14	x	1 8	<u></u> x	X (*)	15	X	/->
		4.5	10100	27401		1000		20.01	- 20.57		X	100
Crop rotation (2 to 3 yrs)		Х	Х	Х	Х	Х		Х	Х	Х		Х
Deep till	Х	Х		Х		Х		Х	Х	Х		Х
Drainage and site selection		Х		Х	Х	Х		Х	Х	Х		
Drip irrigation	х	Х	Х									
Environment (humidity/moisture)	Х	х	Х			х	Х	Х	х	х		
Insect management				Х				Х			Х	
Minimize splashing (mulch)	Х		х	Х		х		Х	х			
Plant spacing, air circulation	Х		х	х		х	х		х	х		Х
Plant vigor	Х	х		Х				Х	х			
Raised beds, surface drainage		х		х		х		х	х			
Reduced wounding/injury				Х		Х			х			
Removal of diseased plants/tissue	Х		х	Х		х	х	Х	х	х	х	Х
Resistant cultivars	Х						х				х	
Sanitation (tools/equipment/shoes)		Х		х	х	х		Х	х	х	х	Х
Solarization		х		Х	х	х		Х	х	х		Х
Weed management	Х		Х		х	х	х	Х		х	х	

FUNGICIDES

Fungicides may be needed to help protect susceptible crops or crops in high-risk situations. This can include certain cultivars, weather conditions, or fields with a history of disease. Often, fungicide efficacy is improved when combined with cultural practices, as covered on pages 2-3.

This publication categorizes organic fungicides into three types: biological (Table 2), botanical (Table 3), and inorganic (Table 4). In most cases, fungicides are preventative or suppressive, not curative. Always use fungicides preventatively. Factors such as active ingredient, formulation, application timing, and external factors such as environmental conditions and inoculum load can also affect efficacy of products and overall effectiveness of disease management programs.

Biological Fungicides

Biological fungicides are made from microorganisms that can have one of three modes of action: antagonism, competition, or induced plant resistance (systemic acquired resistance SAR, immune response). Biological fungicides are dependent on the activity of the microbial agent. Manufacturers often select specific strains of fungi or bacteria based on pathogen antagonism, resiliency, or other traits. Many biological fungicides contain living organisms and may be affected by storage conditions, field conditions or other fungicides or bactericides. Read labels carefully before tank mixing with other products.

Active Ingredient ^{1,2}	Commercial Products	Target Diseases
Bacillus amyloliquefaciens	AmyloShield Cease Companion Maxx Double Nickel Stargus Triathlon	Most Effective AgainstBotrytis gray moldCercospora leaf spotPseudomonas/angular leaf spot/bacterial speckTimber rot/drop/white moldXanthomonas/angular leafspot/bacterial spotFungal leaf spots/leaf diseases, generalOther Diseases ManagedAlternaria leaf spotAnthracnose/ColletotrichumFusarium crown/fruit rotPhytophthora root rot/blightPowdery mildewRhizoctonia root/stem rot/blightRustSouthern blight
Bacillus mycoides	LifeGard	Diseases Managed Anthracnose/Colletotrichum Botrytis gray mold Cercospora leaf spot Downy mildew Timber rot/drop/white mold Fungal leaf spots/leaf diseases, general

Table 2. Biological Fungicides

Bacillus subtilis	Companion Serenade Subtilex Taegro 2	Most Effective Against Powdery mildew <u>Other Diseases Managed</u> Botrytis gray mold Timber rot/drop/white mold
Bacillus thuringiensis	Leap	<u>Diseases Managed</u> Pseudomonas/angular leaf spot/bacterial speck Xanthomonas/angular leaf spot/bacterial spot
Clonostachys rosea (formerly Gliocladium catenulatum)	Lalstop G-46 (formerly PreStop)	Diseases Managed Anthracnose/Colletotrichum Botrytis gray mold Fusarium crown/fruit rot Powdery mildew Timber rot/drop/white mold
Coniothyrium imintans	Contans	Diseases Managed Timber rot/drop/white mold
Pseudomonas chlororaphis	Howler EVO Zio	<u>Diseases Managed</u> Fusarium crown/fruit rot Pythium root rot Phytophthora root rot/blight Rhizoctonia root/stem rot/blight Timber rot/drop/white mold
Reynoutria sachalinensis	Regalia	<u>Diseases Managed</u> Downy mildew Powdery mildew Bacterial leaf diseases, general Fungal leaf spots/leaf diseases, general
Streptomyces lydicus	Actinovate	Diseases Managed Botrytis gray mold Fusarium crown/fruit rot Phytophthora root rot/blight Powdery mildew Pythium root rot Rhizoctonia root/stem rot/blight Bacterial leaf diseases, general Fungal leaf spots/leaf diseases, general
Streptomyces sp. (formerly S. griseoviridis)	LalStop K-61 (formerly MycoStop)	Most Effective AgainstPythium root rotRhizoctonia root/stem rot/blightOther Diseases ManagedFusarium crown/fruit rotPhytophthora root rot/blightTimber rot/drop/white mold
Swinglea glutinosa	EcoSwing	Most Effective AgainstPowdery mildewRustOther Diseases ManagedBotrytis gray moldPseudomonas/angular leaf spot/bacterial speckTimber rot/drop/white moldXanthomonas/angular leaf spot/bacterial spot

Trichoderma asperellum + Trichoderma gamsii	Obtego	Diseases Managed Fusarium crown/fruit rot Pythium root rot Phytophthora root rot/blight Rhizoctonia root/stem rot/blight Southern blight
Trichoderma harzianum + Trichoderma virens	Rootshield Plus	Most Effective Against Phytophthora root rot/blight Pythium root rot Rhizoctonia root/stem rot/blight Other Diseases Managed Black root rot/Thielaviopsis Fusarium crown/fruit rot
Ulocladium oudemansii	BotryStop	Most Effective Against Botrytis gray mold Timber rot/drop/white mold

¹Biological fungicides containing living organisms may be deactivated by antimicrobial products, particularly copper and sulfur; check labels for compatibility before tank-mixing or applying in succession.

²Living organisms require proper storage to maintain viability. Check label for specific storage conditions.

Botanical and Other Biorational Products

In addition to biological fungicides, there are many biorational products on the market. These products are made of materials that are not considered a threat to humans or animals and can include botanical extracts, microbial by-products, mineral oil, or soap. While most biorational products are OMRI approved, some may not; always check labels.

Table 3. Botanical and Other Biorational Products

Active Ingredient	Commercial Products	Target Diseases
Acibenzolar	Actigard ¹	Diseases Managed
		Downy mildew
		Pseudomonas/angular leaf spot/bacterial speck
		Xanthomonas/angular leaf spot/bacterial spot
		Bacterial leaf diseases, general
		Fungal leaf spots/leaf diseases, general
BLAD (Banda de Lupinus	ProBlad Verde (formerly	Diseases Managed
albus Doce)	Fracture)	Botrytis gray mold
,	,	Brown rot/Monilinia
		Powdery mildew
Botanical oils such as garlic,	varies by a.i.	Diseases Managed
capsaicin, thyme		Fungal leaf spots/leaf diseases, general
Citric acid ²	FungOUT	Diseases Managed
	Procidic	Fungal leaf spots/leaf diseases, general
		Additional Uses
		Enhance efficacy of copper and other fungicides

Hydrogen peroxide/	Oxidate	Uses
peroxyacetic acid	Sanidate	Pre-plant dip
	ZeroTol	Seed treatment
		Disinfection of equipment and tools
Neem oil	Rango	Diseases Managed
	Triact	Botrytis gray mold
	Trilogy	Downy mildew
		Powdery mildew
Polyoxin D zinc salt ²	OSO	Most Effective Against
	PhD	Downy mildew
		Other Diseases Managed
		Alternaria leaf spot
		Anthracnose/Colletotrichum
		Botrytis gray mold
		Gummy stem blight
		Powdery mildew
		Southern blight
		Fungal leaf spots/leaf diseases, general
		Additional Uses
		Enhance efficacy of copper and other fungicides
Potassium bicarbonate	Kaligreen	Most Effective Against
	MilStop	Botrytis gray mold
		Downy mildew
		Powdery mildew
		Other Diseases Managed
		Cercospora leaf spot
		Rust
		Fungal leaf spots/leaf diseases, general
Rhamnolipid biosurfactant	Zonix	Most Effective Against
		Phytophthora root rot/blight
		Pythium root rot
		Other Diseases Managed
		Downy mildew
Silicon, calcium silicate	Sil-Matrix	Diseases Managed
		Botrytis gray mold
		Powdery Mildew

¹ Not all SAR products are OMRI approved; refer to label for OMRI certification.

² Citric acid and polyoxin D products are most effective when tank-mixed with other fungicides.

Inorganic Compounds

Some fungicides are derived from inorganic compounds yet are OMRI approved. Copper and sulfur are inorganic compounds that are commonly used as both conventional and organic fungicides. Some formulations of copper and sulfur may be OMRI approved when an alternative organic product is not available. Check product labels and/or consult with your organic certifier to verify products available for certified organic production systems.

Table 4. Inorganic Compounds

Active Ingredient	Commercial Products	Target Diseases
Copper ^{1, 2}	Badge	Most Effective Against
	Basic Cop	Pseudomonas/angular leaf spot/bacterial speck
	Nordox	Xanthomonas/angular leaf spot/bacterial spot
	NuCop	Other Diseases Managed
		Alternaria leaf spot
		Anthracnose/Colletotrichum
		Cercospora leaf spot
		Downy mildew ³
		Powdery mildew
		Target spot/Corynespora
Lime sulfur ^{1,2}	Lime Sulfur Ultra	Diseases Managed
	Sulforix ²	Anthracnose/Colletotrichum
		Brown spot
		Cane blight
		Phomopsis cane/tip blight
		Powdery mildew
		Rust
Sulfur ^{1,2}	Kumulus ²	Most Effective Against
	Microthiol Disperss	Powdery mildew
		Other Diseases Managed
		Downy mildew ³

¹Biological fungicides containing living organisms may be deactivated by antimicrobial products, particularly copper and sulfur; check labels for compatibility before tank-mixing or applying in succession (within 7 days).

²Not all copper and sulfur products are OMRI approved; refer to label for OMRI certification.

³Efficacy of copper and sulfur against downy mildew can be improved by tank-mixing with an SAR or citric acid product; refer to label for compatibility details.

Special Notes

Copper fungicides differ by types of copper compounds, amounts of copper ions (MCE, metallic copper equivalent), particle size, and product formulation. These factors affect efficacy, rate of release of copper ions, and risk for phytotoxicity. Because copper is an inorganic compound, it can accumulate in soils. Copper fungicides are antimicrobial and can degrade cells of animals, plants, and microorganisms, including beneficial organisms like earthworms; never apply to runoff. Not all copper products/formulations are OMRI approved; refer to label.

SAR (systemic acquired resistance, induced resistance) products help build plant immunity. These products include Actigard, Actinovate, Serenade Opti, Lifegard, Regalia, and Timorex. SAR products should be used preventatively. They also help improve the efficacy of copper and sulfur fungicides against certain diseases such as downy mildew.

Table 5. Biological and Biorational Fungicides with the Potential to Manage Common Diseases of Specialty Crops.

								/ /								
												pownrd hilden nintern				
												OWN	otrot nitoconi pi		<u>ð</u> /	alsoit
		ternal all	* SPOT	/ /	. /	al Indel	arnine of		den p	MIN	rodil	Nilew P	ŏ- /	TOM	atoriale	, Di
		ial	attraction of the second	acterial s	2. A	MI OT	alean of	ownymill ownymill	ger a	30° 111	STO AN	illo 10	or voi	2°/	. Ne	aspi
		ter no	ith fail	atem	other	aron	and	JANITAS .	Eatilly	MOR	onder	ATTIN .	ii1000	\$ a	ajone	othe
Acibenzolar	Ý	×/	X)/ \	x	/ ×	x	X	/ ×	/ x	·/ ×	/ 3		·/ ·
Bacillus amyloliquenfaciens	х	x	X	х	x	x	X	х	X	X	х	х	х	х	x	X
Bacillus mycoides	х	х		х	х		х			х				х		
Bacillus pumilus			х				х			Х						
, Bacillus subtilis	х	х	х	х	х	х	х	х	х	х	х	х	х		х	
BLAD				х						х						
Clonostachys rosea ¹				х		х		х		х						
Citric acid	х	х		х	х		х							х		Х
Copper ²	Х	х	Х	Х	Х		х	х	Х			х	х			
Gliocladium virens ¹		х				х		х	х		х					
Hydrogen peroxide		х	х				х			Х						
Neem oil										х						
Polyoxin Z salt	х	х		х			х		х	х		х	х	х	х	Х
Potassium bicarbonate				Х	х		х			Х						
Pseudomonas chlororaphis	х	х		х		х	х	х	х	х	х	х				Х
Reynoutria sachalinensis			х		х		х			х				х		Х
Silicon, calcium silicate				Х	х									х		
Streptomyces lydicus	х		Х			х	Х	х	Х	Х	х	х				Х
Streptomyces grisioviridus						х		х			х	х				Х
Sulfur				Х						Х						
Swinglea glutinosa			Х							Х			х			Х
Trichoderma spp.				Х		Х	Х	х	Х		Х	Х			Х	Х
Ulocladium oudemansii				Х												Х

1 Note name change: *Gliocladium virens* current name is *Trichoderma virens*; *Clonostachys rosea* is formerly known as *Gliocladium catenulatum*.

2 Copper efficacy varies by compound and formulation.

ADDITIONAL RESOURCES

Additional information can be found at the following University of Kentucky Department of Plant Pathology website, including organic spray guides, cultural calendars, and fact sheets.

<u>https://plantpathology.ca.uky.edu/extension/publications</u>

Formatted by: Kim Leonberger, Plant Pathology Extension Associate

Educational programs of the Kentucky Cooperative Extension Service serve all people regardless of race, color, age, sex, religion, disability, or national origin.